Simple robot suggests physical interlimb communication is essential for quadruped walking.

نویسندگان

  • Dai Owaki
  • Takeshi Kano
  • Ko Nagasawa
  • Atsushi Tero
  • Akio Ishiguro
چکیده

Quadrupeds have versatile gait patterns, depending on the locomotion speed, environmental conditions and animal species. These locomotor patterns are generated via the coordination between limbs and are partly controlled by an intraspinal neural network called the central pattern generator (CPG). Although this forms the basis for current control paradigms of interlimb coordination, the mechanism responsible for interlimb coordination remains elusive. By using a minimalistic approach, we have developed a simple-structured quadruped robot, with the help of which we propose an unconventional CPG model that consists of four decoupled oscillators with only local force feedback in each leg. Our robot exhibits good adaptability to changes in weight distribution and walking speed simply by responding to local feedback, and it can mimic the walking patterns of actual quadrupeds. Our proposed CPG-based control method suggests that physical interaction between legs during movements is essential for interlimb coordination in quadruped walking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains

Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...

متن کامل

Adaptive Walking of a Quadruped Robot in Outdoor Environment based on Biological Concepts

We have been trying to induce a quadruped robot to walk with medium walking speed on irregular terrain based on biological concepts. We propose the essential conditions for stable dynamic walking on irregular terrain in general, and we design the mechanical system and the neural system by comparing biological concepts with those essential conditions described in physical terms. PD-controller at...

متن کامل

Biomimetic Locomotion Control of a Quadruped Walking Robot

In this paper, a new biomimetic control method for a quadruped walking robot is proposed. The method is derived by the observation of the gravity load receptor and stimulusreaction mechanism of quadrupeds’ locomotion, and the study of the stances on walking and energy efficiency. Though the controller is simple, it provides a useful framework for controlling a quadruped walking robot. In partic...

متن کامل

TITAN-XIII: sprawling-type quadruped robot with ability of fast and energy-efficient walking

In this paper, we discuss development of a sprawling-type quadruped robot named TITAN-XIII which is capable of high speed and energy efficient walking. We consider a sprawling-type quadruped robot is practical, because of its high stability which comes from the large supporting leg polygon and the low center of gravity. However in previous researches, the speed and the energy efficiency of a sp...

متن کامل

Gait Transition of Quadruped Robot without Interlimb Neural Connections

Quadrupeds exhibit versatile gait patterns (walk, trot, pace, bound, etc.) in response to locomotion speed [1, 2]. These locomotor patterns are generated via the coordination between limb movements, i.e., interlimb coordination. However, the interlimb coordination mechanism for the generation of such locomotor patterns requires further investigation because it has not been clarified thus far.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 10 78  شماره 

صفحات  -

تاریخ انتشار 2013